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Figure 1: Left: by using a Hololens, a user interacts with a virtual agent whose location and orientation are optimized by our
approach. Right: a heat-map showing the cost value of each candidate location for placing the virtual agent. The redder the color
of a location is, the more suitable the location is for placing the agent.

ABSTRACT

When a user interacts with a virtual agent via a mixed reality
device, such as a Hololens or a Magic Leap headset, it is important
to consider the semantics of the real-world scene in positioning the
virtual agent, so that it interacts with the user and the objects in
the real world naturally. Mixed reality aims to blend the virtual
world with the real world seamlessly. In line with this goal, in this
paper, we propose a novel approach to use scene semantics to guide
the positioning of a virtual agent. Such considerations can avoid
unnatural interaction experiences, e.g., interacting with a virtual
human floating in the air. To obtain the semantics of a scene, we first
reconstruct the 3D model of the scene by using the RGB-D cameras
mounted on the mixed reality device (e.g., a Hololens). Then, we
employ the Mask R-CNN object detector to detect objects relevant
to the interactions within the scene context. To evaluate the positions
and orientations for placing a virtual agent in the scene, we define
a cost function based on the scene semantics, which comprises a
visibility term and a spatial term. We then apply a Markov chain
Monte Carlo optimization technique to search for an optimized
solution for placing the virtual agent. We carried out user study
experiments to evaluate the results generated by our approach. The
results show that our approach achieved a higher user evaluation
score than that of the alternative approaches.

Index Terms: Mixed Reality—Scene Understanding— Virtual
Agent Positioning
1 INTRODUCTION

Virtual agents visualized by mixed reality devices enhance the
ability of a user to interact with the real world in many practical

scenarios, e.g. engineering, medicine, education, and so on [26].

Mixed reality applications aim to blend the virtual world with the
physical world. Such blending needs to consider the semantics of a
scene to create a natural and convenient user experience. Take virtual
agent applications as an example. Some applications (e.g., Pokemon
Go [34]) place virtual agents directly in front of the user without
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considering the scene geometry. This causes the virtual agents to be
floating in the air, resulting in unnatural interactions. An alternative,
common approach for placing virtual agents is to determine some
surfaces on objects near the user, and to place virtual agents on these
surfaces (e.g., in Young Conker [30]). Without considering scene
semantics, such an approach may result in improper placement of
virtual agents. For example, the virtual agent may occlude some key
objects that the user is watching or interacting with, e.g. a TV or a
computer screen, causing an inconvenient interaction experience.

To enable a virtual agent to interact with the user naturally, a
mixed reality system should understand the physical world well.
Suppose a virtual agent is visualized as a desktop personal assistant
to guide a user about operating a computer. The agent should be
properly placed and oriented with respect to the user to create a
convenient and comfortable interaction experience. In addition, the
agent should not block the screen of the computer. To position the
agent well, the system should understand the semantics of the scene:
where the user and the computer screen are, and which surfaces are
available for the virtual agent to stand on.

In this paper, we introduce a novel approach which makes use of
scene semantics for properly placing virtual agents in mixed reality
applications. We focus on three aspects of the semantics which
affect the user interaction experiences: what kinds of objects are
in a scene, where the objects are, and where the user is. First, our
approach reconstructs the 3D model of the scene in which the user
interacts with the virtual agent, by using the RGB-D data captured
by the depth cameras mounted on a mixed reality device (e.g., a
Hololens). Second, our approach detects the key objects in the scene
by using a MASK R-CNN method. Finally, through an optimization
process, our approach determines a proper location and orientation
for placing and visualizing the virtual agent according to the scene
semantics and the purpose of the interaction. The optimization
considers spatial factors (e.g., distance and orientation of the virtual
agent relative to the user), as well as visibility of the key objects
from the viewpoint of the user during the interaction. The major
contributions of our work include:

¢ Introducing a new problem of properly positioning virtual
agents according to scene semantics to interact with the user
in mixed reality.

* Proposing a novel optimization-based approach for properly
placing and orienting virtual agents based on scene semantics.
We implemented our approach as a Hololens plug-in, which
can be used for positioning a virtual agent in mixed reality.



* Conducting an extensive user study to evaluate and validate
the effectiveness of the proposed virtual agent positioning
approach.

2 RELATED WORK
2.1 Mixed Reality Auxiliary

Mixed reality can enhance the efficiency of working or learn-
ing [16,27]. With the development of consumer-grade mixed reality
devices, mixed reality is widely used as an auxiliary technology.
Henderson et al. [15] explored the benefits of augmented reality for
maintenance and repairment. Assisted by mixed reality, users can
learn maintenance skills in a short time. Such an approach can save
the cost of teaching by a human trainer. Kim et al. [23] investigated
the effects of visual warning presentation methods on human per-
formance in mixed reality driving. The proposed approaches can
be used and further developed by researchers to better understand
driver performance in augmented reality as well as to inform us-
ability evaluation of future automotive mixed reality applications.
Narzt et al. [33] proposed a navigation system that visualizes traffic
information in the form of MR and enhances user interaction. Bran-
dao et al. [5] used mixed reality to improve dismounted operators’
situation awareness. Liu et al. [28] presented a novel augmented
reality approach, through Microsoft HoloLens, to address the chal-
lenging problems of diagnosing, teaching, and patching interpretable
knowledge of a robot.

To enhance the user interaction experience of mixed real-
ity, some applications offer a virtual agent for interacting with
users [4, 17]. Anabuki et al. [2] created an embodied conversa-
tional agent living in mixed reality space which can achieve some
simple interactions with the user. Balcisoy et al. [3] created a virtual
agent which can play checkers with the user. Miyawaki et al. [31]
created a virtual agent for a cooking navigation system which uses
the ubiquitous sensors in augmented reality. The cooking navigation
system can recognize the progress of cooking and can show appro-
priate assistive contents accordingly. Besides, Inoue et al. [20] and
Fadil et al. [10] proposed physical task supporting systems using
virtual agents visualized by mixed reality. Holz et al. [18] proposed
a mixed reality agent as museum guides, but their virtual agent
needs to cooperate with a physical robot to achieve positioning and
movement.

Compared with the previous works on auxiliary virtual agents,
our approach focuses on properly positioning the agent to enhance
the interaction between the virtual agent and the user in a mixed
reality setting. The location of the user, the orientation of the user,
as well as what the user wants to do are all considered during the
optimization process.

2.2 Virtual Agent Positioning

The essence of positioning is to compute an appropriate position
and orientation for the virtual agent. In the field of robotics, posi-
tioning is an important problem. Se et al. [37] described efficient
algorithms for positioning a mobile robot in an environment with
landmarks. Chong et al. [6] proposed an interactive method which
can plan collision-free paths for the robot using mixed reality. Sud
et al. [39] presented a novel approach for real-time path planning of
virtual agents in complex dynamic scenes. Narang et al. [32] simu-
lated movement interactions between avatars and agents in virtual
worlds using human motion constraints. Elber et al. [9] investigated
object positioning and displaying in virtual environments. Kato et
al. [22] investigated virtual object interaction and user tracking for a
table-top mixed reality interface.

Deep learning approaches have also been applied for agent
positioning. Akiyama et al. [1] proposed a novel agent positioning
mechanism for dynamic environments. They computed suitable
positions for each agent by a deep learning method according to
the current status of the environment. Korjani et al. [25] proposed
a method for dynamic autonomous agent positioning based on a
modular neural network.

Most of the existing works achieve the positioning by detecting
markers or by prediction using a deep learning method. By explicitly
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Figure 2: Overview of our approach.

encoding spatial and visibility considerations as cost terms, our
approach optimizes the location and orientation of the virtual agent
to enhance its interaction with the user. For example, the visibility
cost ensures that the virtual agent does not block the user from the
key objects that he is interacting with. Other ergonomic factors can
be similarly incorporated into our optimization framework.

2.3 Human-centric Scene Understanding

A major goal of our approach is to facilitate the interactions
between a virtual agent and a user through proper positioning of
the virtual agent. To achieve this, our approach needs to obtain
the semantics of the scene with regard to human-centric guidelines.
Human-centric understanding of environments, which is in line with
the concept of affordances introduced by Gibson [13], has a long
history.

Some recent works learn the semantics of a scene to enhance
the interaction between the scene, and the virtual agent or the user.
Savva et al. [35] proposed a method which aims to understand ac-
tions by modeling how people interact with their 3D environments.
More specifically, they modeled the space of interactions between
the human body and the geometry of the environment in which ac-
tions take place. This allowed them to make predictions about the
functionality of the 3D scene geometry and the implied functional
characteristics of virtual scenes. Furthermore, they learned inter-
actions between human and other objects in the daily scene from
observations [36]. Fisher et al. [11] proposed a data-driven method
for functional 3D scene modeling and represented scene function-
alities through virtual agents, associating object arrangements with
the activities for which they are typically used. Wang et al. [40]
presented a convolutional neural network based approach for indoor
scene synthesis. Jiang et al. [21] proposed a systematic learning-
based approach to the generation of massive quantities of synthetic
3D scenes and arbitrary numbers of photorealistic 2D images. Kim
et al. [24] proposed an algorithm for automatically predicting a static
pose that a person would need to adopt in order to use an object. Fu
et al. [12] proposed an approach for the adaptive synthesis of indoor
scenes via activity-associated object relation graphs. Using the la-
beled human positions and directions in each plan, they detected the
activity relations and computed the coexistence frequency of object
pairs to construct activity-associated object relation graphs.

Based on the human-centric guidelines, our approach achieves
the positioning by considering the scene semantics surrounding the
user. Compared with the other works, we focus on the interaction
between a user and a virtual agent in addition to understanding how
the user may interact with the scene. Therefore, we need to not only
understand the semantics of the surrounding scene where the user
performs tasks but also to automatically select a suitable location
and orientation for the virtual agent to enhance the interaction.

3 OVERVIEW

The goal of our work is to position a virtual agent with a proper
location and orientation relative to a user in a mixed application
according to the semantics of a scene. Within the constraints of the
scene, the location and the orientation of the positioned virtual agent
need to be appropriate and consistent with the scene semantics. The
framework of our approach is shown in Figure 2, consisting of two
parts: preprocessing and optimization.

In the preprocessing part, our approach obtains the semantics of
the scene, including what and where the objects are. First, we scan
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Figure 3: Preprocessing results. (a) A 3D scene reconstructed by a
Hololens. (b) Object detection results achieved by the Mask R-CNN
object detector. The bounding boxes, categories and the classifica-
tion confidence scores of the detected objects are shown. The two
objects, shown in blue and red, are also automatically segmented by
the approach.

the scene via a Hololens helmet to obtain the 3D model with texture
of the scene. Second, our approach detects some predefined key
objects for relevant interaction tasks via the Mask R-CNN approach.
After these two steps of preprocessing, we obtain the 3D model of
the room and the detected key objects.

In the optimization part, our approach optimizes the location and
orientation of the virtual agent iteratively, considering the semantics
of the scene. A cost function with a visibility term and a spatial
term is designed to evaluate how well the location and orientation of
the virtual agent is. The visibility term ensures the user’s view of
watching key objects would not be occluded by the virtual agent. The
spatial term controls the distance and orientation of the virtual agent
with respect to the user for a natural and convenience interaction.
A Markov chain Monte Carlo optimization algorithm is applied to
search for a solution.

4 PREPROCESSING

In this section ,we discuss how to obtain the semantic informa-
tion of a scene. We perform two steps: 3D scene reconstruction
to obtain the geometry and texture of the scene; and key object
detection to obtain the scene semantics (including what and where
the objects are in the 3D scene.

4.1 3D Scene Reconstruction

To obtain the geometry of the scene, we use the spatial map-
ping technique of the Hololens to scan the scene. For a room in an
apartment, it generally takes about two minutes to scan the scene
and reconstruct the 3D model (depending on the size of the scene).
The 3D model is represented by a set of dense triangular meshes.
Figure 3(a) shows an example of the 3D model, scanned and recon-
structed from a scene .

The texture of the 3D model is captured synchronously during
the scanning process using the cameras mounted on the Hololens.
During the scanning, we capture a video stream through the RGB
cameras. Then the stream is used to color a UV map and texture the
3D model. The implementation is similar to the work of Dong et
al. [8]. In this way, we apply the corresponding texture for the 3D
model.

4.2 Key Object Detection

During the interaction, there could be some objects that the
user is interacting with and that should not be occluded by a virtual
agent. We term the objects, whose blockage will affect the user’s
interaction experience, as key objects. These key objects are closely
related to the user’s interaction task. For our experiments, we define
3 types of interaction tasks: communication, teaching and guiding.
Furthermore, we define 5 key objects for each interaction task. It
is worth to note that the predefined key object set can be extended
according to different interaction tasks.

In our experiment, the user may inform the virtual agent about
his interaction task through voice control via the Hololens. For
example, if the user wants to work with the computer, he could say:

(b) The occlusion map 1.

(a) The weight matrix @.

Figure 4: A visualization of the visbility cost. (a) The weight
matrix denotes how important each location on the key object is.
The visibility cost penalizes occlusion of important locations by
the virtual agent. (b) The occlusion map rendered from the user’s
viewpoint. The white region shows the locations on the key object
occluded by the virtual agent.

”can you teach me to use the computer?” Then, the keyword “’teach”
could be recognized by the voice recognition module of the Hololens
and our approach can optimize the virtual agent with a teaching task
setting. The key objects predefined in the teaching task, such as
computers, blackboards, books, and so on, will be considered when
positioning the virtual agent.

To obtain what and where the key objects are in a 3D scene, we
first detect the key objects in 2D images (from the captured video
stream in the scanning process) by the Mask R-CNN approach ( [14]).
The Mask R-CNN approach can efficiently detect objects in an image
while simultaneously generating a high-quality segmentation mask
for each instance. Figure 3(b) shows an example of the key object
detection, in which the sofa and the table are detected and applied
the corresponding masks via the Mask R-CNN approach.

After that, we map the detected key objects to the 3D model
of the scene. We estimate the camera’s parameters roughly from
the 2D image using the method of Horry et al. [19]: extracting the
vanishing point based on the principle of perspective projection, and
estimating the camera parameters. With the estimated parameters,
we set up a camera in the reconstructed 3D scene and render an
image. This rendered image corresponds to the 2D image. Using
these two images, we can calculate the corresponding positions of
the key objects in the 3D scene.

This preprocessing step provides the semantics of the scene:
what kinds of objects are in the scene and where the objects are.

5 TECHNICAL APPROACH

The goal of our approach is to position a virtual agent with a
proper location and orientation with respect to the semantics of a
scene. We solve the problem of positioning the virtual agent by an
optimization process. A cost function, consisting of a visibility term
and a spatial term, is designed to measure how proper a positioning
of the virtual agent is. By optimizing the cost function, our approach
searches for a desired location and orientation for the virtual agent.

We represent a virtual agent configuration in a scene as a tuple
a = (Ix,ly,I;,0x,0y,0;), where (Iy,1y,1;) contain the 3D coordinates
of the virtual agent, (ox,0y,0,) contain the orientation angles of the
virtual agent about the x,y and z axes respectively.

The total cost function is defined as:

Ciotal(@) = AvCv (a) + AsCs(a). )

Cy/(a) is the visibility cost, which penalizes the situations where
the key objects are occluded from the viewpoint of the user. Cs(a) is
the spatial cost, which encourages the proper location and orientation
of the virtual agent from the user, learned from crowds. Ay and Ag
are the weights of the corresponding cost terms. To balance the effect
of each cost term, we make the weights sum to 1. In our experiment,
the weights are set as (0.5,0.5) by default. Users can also adjust the
weight of two cost functions according to their personalized needs
as the ablation studies show.

5.1 Visibility Cost

The visibility of key objects (e.g., a computer) from the user’s
viewpoint is an important factor affecting the interaction experience,



because the key objects’ fundamental functionality is compromised
if their frontal surfaces are occluded by the virtual agent. To this
end, we devise a visibility cost to restrain the occlusion issue. If the
virtual agent blocks the key objects from the user’s viewpoint, the
visibility cost will increase to penalize such a configuration.

Furthermore, considering that an occlusion near the center of
the key objects is likely to affect the interaction experience more
severely compared to an occlusion near the key objects’ boundary,
we define a weight matrix to penalize the former situation by a larger
extent. The visibility cost is defined as:

Cy(@) = Y10, j)- (i, ), @

B HwHZ'lmax i.j

where / is an occlusion map, rendered from the viewpoint of the
user. (i, j) is 1 if the pixel at (i, j) shows an overlapping between
the virtual agent and a key object (i.e., the virtual agent is occluding
the key object), otherwise I(i, j) is 0. As shown in Figure 4(b), the
white region corresponds to the occluded region of the key object.
We also rendered an image I’ without the virtual agent from the
same viewpoint with 1. I, represents the number of pixels in I’
occupied by all key objects. In our experiment, the number of the
occluded key object is not limited to one.

 is the weight matrix, whose dimensions are equal to those of
the rendered image I. ||@||, means the 2-Norm of matrix @. ||®||,
could be zero. However, in our experiment, the solution space is
limited, so that this situation does not exist in the actual optimization.
(i, j) is 0 if pixel (i, j) does not belong to any key object. If pixel
e:'lnux
L+e;’
enqc represents the maximum Euclidean distance from the center
pixel of the key object n to the marginal pixel of it. e ; represents

where

(i,7) belongs to the n-th object, we set @(i,j) =

the Euclidean distance from the center pixel of the key object n to
the pixel (i, j). Figure 4(a) shows two key objects in the scene with
the corresponding weight matrices visualized. A large occlusion
area or an occlusion near the center of the key object results in a
high visibility cost. Therefore, the occlusion of key objects by the
virtual agent will be restrained effectively by the visibility cost.

5.2 Spatial Cost

Spatial factors, namely the location and orientation of the vir-
tual agent relative to the user, are vital for an interaction. For the
location, if the distance of the virtual agent to the user is less than
the minimum social distance [38], the user may feel uncomfortable.
In contrast, if the distance is too far, the user may not be able to see
the virtual agent clearly. On the other hand, if the virtual agent is not
properly oriented (e.g., not facing the user), the interaction would
also be unnatural and uncomfortable.

To obtain a proper location and orientation, we learn from
crowds and fit a mixed Gaussian distribution with K Gaussian ker-
nels. The spatial cost term is defined as:

Cs(a)=1-) mGi(d,0; 14, %), 3)
kek

where d and 0 represent the distance and orientation of the virtual
agent relative to the user, respectively. d is calculated by the Eu-
clidean distance between the virtual agent and the user. 0 is the
angle between the normal vectors of the user and the virtual agent
on the x-z plane, which denote the frontal directions of the user and
the virtual agent. Gy, represents the k-th Gaussian kernel with the
mean L and the covariance matrix X;. 7 is the weight of the k-th
Gaussian kernel. p, X; and 7 are learned from crowds.
Learning from Crowds. For different interaction tasks, the com-
fortable distance and orientation of the virtual agent could be dif-
ferent. Therefore, we fit one Mixed Gaussian distribution for each
interaction task to model the conventional choices of crowds.

We recruited 30 participants, ranging from 18 to 50 years old,
to collect their conventional choices. The three interaction tasks
are performed in 3 scenes which contains typical furniture, such as
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Figure 5: A comparison between optimizing the virtual agent’s con-
figuration using the MCMC algorithm and the greedy algorithm. The
MCMC algorithm finds a solution of a lower cost. The optimization
finishes in about 2 seconds.

television, couch, chairs. For each task, we placed a virtual agent
randomly in front of the participant. Each participant was asked
to wear a Hololens helmet and to observe the virtual agent in the
scene. The participant could move and rotate the virtual agent, until
he felt comfortable to interact with it. Then we recorded the current
configuration of the virtual agent. Each participant repeated the
choice 5 times for each interaction task.

All participants performed the choices for three tasks. In total,
we obtained 150 locations and 150 orientations for each interaction
task. Based on the collected data, we calculated the distance and
orientation of the virtual agent relevant to the user. Then, we use the
maximum likelihood approach [7] to estimate u, ¥; and 7.

By the spatial cost function, the location and orientation of the
virtual agent will tend to follow the preferred configuration which is
learned from crowds for a particular interaction task.

6 OPTIMIZATION

We search for a proper location and orientation of the virtual
agent by an optimization process. The goal of the optimization
is to find a location (ly,ly,l;) and an orientation (ox,0y,0;) that
minimize the total cost function Cyygy (a). During the optimization,
our approach searches for the suitable location and orientation of the
virtual agent for an interaction task against the defined cost functions.
A Markov chain Monte Carlo (MCMC) sampler is applied to explore
the solution space and it has the ability of jumping out from a local
minimum by the strategy of accepting a non-optimal choice with a
certain acceptance probability.

6.1 Move

The MCMC sampling works by choosing a “move” to generate
a new sample. We define two moves to explore the solution space:
distance move and orientation move, corresponding to adjusting the
location (Iy,1y,1;) and the orientation (oy,0y,0) of the virtual agent.
The sampling process performs these two moves alternately.
Distance Move. In the distance move, the sampler generates a new
location (I, ;,17) based on the current location (Iy, ly, 1)

(IX7ly7lZ) - (l)/ml;ylé)a (4)
The distance move is achieved along the surface of the 3D model
of the scene. From the current location, we use a sampling radius
to define the sampling range. Since we sample along the surface,
we use the geodesic distance to define the sampling radius. Within
the sampling range, we sample a new location (I, [y, ;) randomly
in each move. The sampling radius is set as 20 cm at the beginning.
It decreases by 1cm every 10 iterations of the optimization until it
reaches lcm.
Orientation Move. In the orientation move, the sampler gener-
ates a new orientation (oy,0),0;) based on the current orientation

y?
(0x,0y,07):



(a) Communication Task

(b) Teaching Task

(c) Guiding Task

Figure 6: The results of positioning the virtual agent in three interaction tasks. For more intuitive visualization, we use a third-person view to
render the virtual agent. (a) The virtual agent chats with the user about the TV content. (b) The virtual agent teaches the user how to cook. (c)

The virtual agent introduces the food in the refrigerator.

(0x,0y,0;) = (ox,oly,oz), 5)

where 0; =0y + 8y, and 8, € [—8pax, Opax] is a random value. The

initial value of &, is 60°. It decreases by 10° every 60 iterations
of the optimization until it reaches 10°.

6.2 Solution Space Constraints

To speed up the optimization, we constrain the solution space
by three conditions:
Range Constraints. We constrain the solution space to be a fan-
shaped region in front of the user. The fan-shaped region is defined
using the location of the user as the fan’s apex, with a radius of 2.5
meters and an angle of extension of 120 degrees. The distance move
will be performed within this region to sample a new location. See
Figure for an illustration.
Surface Constraints. Some solutions may cause the virtual agent
to be floating in the air, which is not unnatural. So we only consider
placing the virtual agent on the upper surface of an object in the
scene or on the floor.
Occlusion Constraints. We also prevent the virtual agent from
crashing into objects. In the sampling process, our approach per-
forms a collision detection between the virtual agent placed at the
sampled location and orientation, and objects in the scene. If a
collision occurs, another random location or orientation will be
sampled.

6.3 Sampling

At the beginning of the optimization, the virtual agent is ini-
tialized with a random position and a random orientation. As the
optimization proceeds, the new location (11,1, ;) and orientation
(ox,o;,oz) are proposed and evaluated using the total cost func-
tion. The proposed location and orientation are accepted or rejected
according to the Metropolis criterion:

Pr(d'|a) = min(lve%(cwtal(a)—ctmal (a’)))’ 6)

where T is the temperature of the simulated annealing process. We
set the value of T empirically as 300 at the beginning of the opti-
mization, allowing the optimizer to explore the solution space more
aggressively. The value of T drops by 0.5 every iteration of the
optimization until it reaches 0, allowing the optimizer to refine the
solution near the end of the optimization. We terminate the opti-
mization if the absolute change in the total cost value is less than 5%
over the past 25 iterations. Generally, it takes about 400 iterations
to obtain the solution for the three types of interactive tasks in our
experiments.

Figure 5 shows an example of optimizing a position for the
virtual agent using the MCMC approach and the Greedy approach.
The MCMC approach obtains a solution with a lower cost value
(0.28) compared to the Greedy approach (0.39). The cost value of
the greedy algorithm experiment didn’t change from about iteration
175 to about iteration 200. Thus, the optimization (green line)
stopped at about iteration 200. Since the MCMC algorithm can

accept a solution with a cost higher than that of the current solution
with a certain acceptance probability, the sampling is capable of
jumping out from a locally optimal solution. This prevents the
sampling from being performed locally, and eventually locating a
more optimal solution with a lower cost value.

7 EXPERIMENTS
7.1 Implementation

We implemented our approach using C# and Unity 5.6. Due to
the limited computing power of the Hololens, we ran the optimiza-
tion approach on a PC equipped with 16GB of RAM, a Nvidia Titan
X graphics card with 12GB of memory, and a 2.60GHz Intel i7-
5820K processor. The position of the user and the optimized results
are transmitted between the Hololens and the PC by WiFi. Based
on the transmitted results, the user can interact with a virtual agent
properly placed and oriented according to the optimization result via
the Hololens mixed reality headset. The time of optimization and
transmission is about 4 seconds on average.

7.2 Interaction Tasks

We design three types of interaction tasks which cover the com-
mon interactions between a user and a virtual agent, to demonstrate
our approach: communication task, teaching task, and guiding task.
Communication Task. Communication is a very common inter-
action between a user and a virtual agent. It is important to have
a suitable distance and orientation during the communication pro-
cess. If the distance is too close, it may cause discomfort due to
the invasion of privacy; if the distance is too far, the dialogue may
not be heard and the agent may not be clearly seen. In addition, the
orientation of the virtual agent will also affect the user’s interaction
experience. If the orientation deviates from a reasonable range, the
virtual agent could be facing away from the user, which hinders
communication. Besides, if some key objects (e.g., a TV) exist in
the scene, we need to avoid the problem of occlusion.

Figure 6(a) shows a result generated for a communication task.

Optimized by our approach, the virtual agent sits on a chair and
communicates with the user, maintaining a certain social distance
with a natural orientation from the user. During the interaction, the
virtual agent may change its pose according to the nearby scene. If
the conversation takes place in an open area, our approach assigns a
standing pose for the virtual agent. If the sampled location happens
to be on the top surface of a stool of sofa, our approach assigns a
sitting pose for the virtual agent. Since the user is watching the TV
when chatting with the virtual agent, the visibility cost will give a
certain constraint on the location of the virtual agent, preventing the
virtual agent from blocking the TV from the user.
Teaching Task. An important role a virtual agent plays is to teach
or to assist a user. For some tasks, such as cooking, assembling
furniture, and repairing things, it could be unintuitive to learn by
reading instruction manuals, while face-to-face teaching is expen-
sive. Teaching via a mixed reality device provides a low-cost yet
promising solution that mimics face-to-face teaching.



(a) Communication Task

(b) Teaching Task

(c) Guiding Task

Figure 7: Visualization of the total cost in the three interaction tasks. The color corresponds to the lowest cost value at each location considering
all orientations at that location. The redder the region, the lower the cost value. The yellow circle shows the current location of the user. The
red circle shows the virtual agent’s location and orientation selected by our optimization approach. The gray region is excluded from the

solution space due to the range constraint.

Figure 6(b) shows an example. The virtual agent stands nearby

the stove and teaches the user how to cook. We may notice that the
distance between the user and the virtual agent in the teaching task
is closer than that in the communication task. Such a prior distance
was learned from the crowds. A possible reason for the shorter
distance for teaching tasks is that teaching often involves close
interaction. Besides, the size of the virtual agent varies according to
the surrounding scene. If there is a platform around the virtual agent,
and if it is more suitable for teaching, our approach sets its height to
be 30cm empirically. This height can be adjusted according to the
user’s own needs. In addition, the visibility cost prevents the virtual
agent from occluding the key objects (vegetables) in this interaction
task.
Guiding Task. Sometimes, the user may need to constantly change
his position in the scene, which is different from the situation in
the communication and teaching tasks where the position of the
user rarely changes. For example, when the user enters a new
apartment, he may want a virtual agent to guide him. As the user
walks around to explore the apartment, the virtual agent needs to
update its optimized position quickly to keep up with the user. We
design the guiding task to cope with this situation.

Figure 6(c) shows an example. The virtual agent is introducing
the food in the refrigerator to the user. The visibility cost prevents
the virtual agent from occluding the key objects (the refrigerator and
the drinks) from the user. The spatial cost maintains an appropriate
distance between the user and the virtual agent.

Our approach can handle different types of interaction tasks. It
makes the interaction between a virtual agent and the user more con-
venient and user-friendly. We conducted a user study to evaluate the
virtual agent positioning for the three different types of interaction
tasks, and compared the results achieved by our approach with two
other positioning approaches. We will discuss them in Sec 8.

7.3 Visualization of Cost Function

To illustrate the effect of the defined cost function more intu-
itively, we visualize the cost values of the entire solution space with
a heat-map as shown in Figure 7. For the visualization result, we
plot the value of 1 — Cyy, at each point on the 3D model. So, the
redder a location is, the lower the cost value it carries, and the more
suitable it is to place the virtual agent.

Figure 7(a) shows a scenario of the communication task. The
middle region of the chair on the right has the deepest red, which
means it is the best region for placing the virtual agent. This region
has a proper distance between the user and the virtual agent. The
stool in front of the coffee table also has an acceptable distance, but
the virtual agent would occlude the key object (TV) if it sat there.
Other areas are mainly green or blue, hence are less suitable for
positioning the virtual agent.

Figure 7(b) shows the virtual agent teaching the user to cook
near a stovetop. The region on the right of the stovetop gets lower
cost values. Since there are key objects (vegetables) on the right
side of stovetop, the middle part of the red region is yellow, which
means its cost value is higher than the surrounding area. Placing the

virtual agent there would have blocked the vegetables from the user.
Besides, the regions around the stovetop (a key object) is also yellow
(having a higher cost value), because placing the virtual agent there
would have blocked the user from seeing the stovetop.

Figure 7(c) shows a guiding task in which the user stands nearby
the refrigerator and the virtual agent introduces the food inside. The
right side in front of the fridge gets the lowest cost value, which is
most appropriate for placing the virtual agent for guiding the user.
The further away from the refrigerator, the higher the cost value is.
It is worth noting that the region on the left front of the refrigerator
is green, because that region is too close to the user.

Through the visualization of the cost values of the solution space,
it can be seen that the definition of our cost functions are effective
and the positioning of the virtual agent can be optimized for three
types of interaction tasks appropriately .

7.4 Ablation Experiment

To analyse the influence of the weights in the cost function,
we did an ablation experiment. The cost function consists of the
visibility cost and the spatial cost, and the corresponding weights are
Ay and Ag respectively. We implemented the ablation experiment
by changing the weights.

First of all, we want to know what the result is if we do not
consider the visibility cost term. We set Ay and Ag as 0 and 1.
The results are shown in Figure 8(a). Without the visibility cost
constraint, the distance and orientation of the virtual agent relative
to the user are still reasonable. However, the key object (computer
screen) is occluded by the virtual agent, which will affect the user’s
interaction experience.

Secondly, we test the approach without the spatial cost term. We
set Ay and Ag as 1 and 0. As Figure 8(b) shows, the virtual agent
does not occlude the key object at all with the visibility cost term.
However, since the weight of the spatial cost term is 0, the distance
between the virtual agent and the user is too far, and the orientation
is not suitable for interaction. Therefore, without the spatial cost,
the virtual agent can only ensure no occlusion with the key objects.
The improper distance and orientation may cause inconvenience in
user interaction.

Finally, we test the optimization results when Ay and Ag are
set as 0.5 and 0.5. As Figure 8(c) shows, the optimization result is
much more reasonable than the first two. However, the virtual agent
still has a little overlap with the key object (computer screen). It
is because the visibility cost has an equal weight compared to the
spatial cost, so when the distance and orientation are appropriate,
even with some occlusion, the total cost is still low, causing the
optimizer to accept this result.

In general, this set of experiments demonstrate the rationality of
the visibility cost and spatial cost design. The two cost terms work
together to achieve a reasonably positioning of the virtual agent.

8 USER STUDY

We carried out a user study to evaluate the effectiveness of the
proposed virtual agent positioning approach. We attempted to verify
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Figure 8: Results of the ablation experiments. Ay and Ag are the weights of the visibility cost and the spatial cost.
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Figure 9: Location, orientation, and overall evaluation scores for
the virtual agent placed by our approach, the traditional approach
and the direct approach. Error bars denote the standard errors of the
mean.

two conditions, by two experiments: first, a comparison experiment
to testify whether our approach can position the virtual agent more
reasonably than other approaches; second, a regression analysis to
verify the rationality of the designed cost function.

Participant. 30 volunteer participants were recruited who were
unaware of the purpose of the user study. The participants included
15 males and 15 females whose ages ranged from 18 to 50. All
the subjects reported normal or corrected-to-normal vision with no
color-blindness. 20 subjects reported that they did not have any
experience in mixed reality devices using.

Data. We tend to compare three approaches: our approach, tradi-
tional approach, and direct approach.

The first approach is our approach. The virtual agent is posi-
tioned with the location and orientation optimized by our approach
based on the semantics of the scene.

The second approach is a traditional approach which has been
widely used in AR applications nowadays (e.g., Young Conker [30]).
In this approach, the user needs to set a virtual place (e.g., a desktop)
and the virtual agent will be positioned on the plane randomly. The
orientation is generated within a range of —30° to +30° around the
angle of facing towards the user.

The third approach is a direct approach which has been com-
monly used in some early AR applications (e.g., Pokemon Go [34]).
In this approach, the virtual agent is directly positioned in front of
the user. The orientation was generated as the second approach does.

To reduce the bias, besides the former three approaches, we

generated extra 47 configurations of the virtual agent for each inter-
action task. The 47 results were generated based on our optimized
result: the location generated randomly within 1m range of our opti-
mized location along the upper surfaces of the objects in the scene;
the orientation generated randomly within a range of —45° to +45°
around our optimized orientation. The generated virtual agent were
mixed with the other virtual agents generated from the 3 compared
approaches. All virtual agents appeared with random orders. The
participants did not know which approach the current virtual agent
was generated from.
Procedure. The user study was carried out via a Hololens with a
controller. Before the evaluation, each participant went through a
5-minute warm-up session so that they got familiar with using the
Hololens helmet. A MR application, Holotour [29], was used as
the warm-up program, in which the user could learn about the basic
operation (e.g., observing, selecting) via the Hololens.

Instructions for each experiment were provided via a window in
the MR environment; participants read the instructions and indicated,
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with their controller, when they were ready to proceed to the next
window. This was done to prevent any bias resulting from verbal
instructions from the experimenter. Participants were, however,
told to notify the experimenter if they had any questions during the
instruction period.

To eliminate the bias caused by the task order, we take the
strategy of counterbalancing. All participants were divided into
three groups randomly. Then a 3 x 3 Latin squares is used to arrange
the task order for each group.

Each participant was required to observe the virtual agent via the
Hololens. Then he was required to score for the virtual agent in terms
of the location, the orientation, and the overall impression by choose
the corresponding score on a scoreboard via the controller. The
scores varied from 1 to 5. It took about 10 seconds for a participant
to score for a virtual agent.

Participants were told to report any sickness or discomfort with

the apparatus at any point in the experiment and that they could
terminate their session at any time.
Metrics. We use three metrics to evaluate and analyze the perfor-
mance of positioning the virtual agent by each approach: location
score, orientation score, and overall score. These scores represent
how comfortable the participants feel about the virtual agent in terms
of the location, orientation, and overall impressions. All scores range
from 1 to 5. The higher a score is, the better the evaluated term is.

8.1 Statistical Analysis

We compare the results generated from the three approaches
by the mean and standard deviation of the users’ ratings. We also
carried out ANOVA tests on the scores to analyze the significance.
Figure 9 shows the average scores and their standard deviation of
the location, orientation, and overall over three interaction tasks.
Location. The average location scores over three interaction tasks
with our approach achieved the highest score 4.29, followed by the
traditional approach 2.76, and the direct approach 2.05.

Take the communication task as an example. The mean score of
the location for our approach, the traditional approach, and the direct
approach was 4.23 £0.43, 2.7 £0.59, and 2.03 +0.67, respectively.
The difference between our approach and the traditional approach
(Fpo,58) = 83.13, p=9.55E — 13 < 0.05), or between our approach
and the direct approach (Fp sg) = 119.34, p = 1.08E — 15 < 0.05)
was statistically significant. The direct approach got the lowest
score in this task. Since the direct approach placed the virtual agent
in front of the user without considering any scene semantics, the
virtual agent may float in the air or overlap with other objects, which
resulted in the lowest rating score. The traditional approach placed
the virtual agent on a plane, which was more reasonable than the
directed approach. Whereas, it did not consider the occlusion of
the key objects in the scene, which may influence the interaction
experiences, e.g. placing the virtual agent on a table in front of
the user and causing occlusion when the user was watching TV.
Optimized by our spatial cost and visibility cost, the virtual agent
could keep an appropriate distance when interacting with the user
and avoid overlapping with other key objects, so that the location
score of our approach was better than the other two approaches.
Orientation. For the orientation evaluation, over three interaction
tasks, the average score of the results optimized by our approach
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Figure 10: Scatter plot of the overall scores and the cost values in
three interaction tasks. The green, red and purple points represent
the results from the communication, teaching and guiding task, re-
spectively. The blue line is the linear regression plot. The scores are
effectively fit by a linear model. It indicate that there is a significant
negative association between the overall values and the cost values.

were higher than 4.00, followed by the traditional approach with an
average score about 2.72. However, the scores of the traditional ap-
proach varied in different interaction tasks (e.g., 3.20 in the teaching
task and only 2.23 in the guiding task). The worst was the direct
approach, with an average score ranging from 1.40 to 2.50.

Since the traditional approach and the direct approach tended
to place the virtual agent with a random orientation within a range,
in some scenarios, the user may feel uncomfortable. For example,
in the guiding task, when the virtual agent needed to introduce the
foods in a refrigerator to the user. With the random orientation,
the virtual agent did not see the food nor the user. Therefore, the
orientation scores of the other two approaches were lower than that
of our approach.

It is interesting to observe in Figure 9(b). Although both the
traditional approach and the direct approach used the same strategy
to generate the orientation for the virtual agent, the average scores of
the orientation were different. The traditional approach got a higher
score, compared with the direct approach. The reason may be that
the user’s evaluation on the orientation depended on the location
partially. That is, the influence of the location and the orientation on
the interaction experiences were coupled together. So our approach
learned the preferences from crowds without decomposing these two
factors, which resulted in stable performance across tasks.

We also did an ANONA test on the orientation scores. The
results showed statistically significant between our approach and
the traditional approach (communication:(£p 5) = 130.44, p =
1.80E —16 < .05), teaching: (Fjp 55) = 111.85, p=3.70E — 15 <
.05), guiding: (F2 .58 = 97.11, p = 5.30E — 14 < .05)), our ap-
proach and the direct approach(communication: (Fj sg) = 229.30,
p=T.90E —22 < .05), teaching(F] 58) = 236.97, p=3.80E —22 <
.05), guiding:(Fp 551 = 179.56, p = 2.10E — 19 < .05)).

Overall Score. Considering the overall scores, the average score
of our results was the highest. The overall average score for the
communication task (4.40) and the guiding task (4.37) were higher
than that of the two individual scores (communication-location 4.23,
communication-orientation 4.20, guiding-location 4.13, guiding-
orientation 4.00). We also did an AVOVA test on the overall scores.
The results showed that our approach outperformed the other two
approaches with statistical significance. Please refer to the supple-
mentary for more details.

Through the statistical analysis, we believe that our positioning
approach based on the semantics is more effective than the other
two approaches. Specifically, the average scores in three tasks was
higher than the other two approaches, and the standard deviation
was smaller. It showed the statistical significance in the experiments.

(a) Near a Vendmg Machlne

(b) In a Meeting Room

Figure 11: Optimizing results in other scenes. (a) The virtual agent
briefs the user about how to use the vending machine. (b) The virtual
agent guides the user to use a computer in a meeting room.

8.2 Regression Analysis

To investigate the validity of our cost function, we did a regres-
sion analysis based on the overall scores for the configurations of
virtual agents in the user study and the corresponding cost values of
the configurations. The average overall scores of 150 configurations
used in the user study and the corresponding cost values of the con-
figuration are plot in Figure 10. The green, red and purple points
represent the results from the communication, teaching and guiding
task, respectively.

A linear regression was calculated to predict the overall score
based on the cost value. A significant regression equation was found
(Fp2,148) = 304.81, p = 9.16E — 38 < .05) with an R? of .673. Tt
indicates that there is a significant negative association between the
overall values and the cost values.The configurations which obtain
higher overall scores in the user study have lower cost values, vice
versa.

9 SUMMARY

To interact with a virtual agent in the mixed reality naturally
and realistically, it is necessary to place the virtual agent at a proper
location and with an orientation, which is based on the well under-
standing of the semantics of the real world. We propose an approach
to solve the problem of positioning a virtual agent based on the scene
semantics in mixed reality. To understand the semantics of the scene,
we reconstruct the 3D model of the scene and detect key objects in
it. Then we devise a cost function and optimize it by an MCMC
approach to obtain a proper position for the virtual agent.

There are some benefits of using our semantics-based position-

ing approach. First, our approach allows the user to interact with
the virtual agent more naturally and realistically. Second, the cost
function design and the optimization process enable the user to ex-
tend our framework conveniently. For example, the user may add
specific cost to constrain the appearance of the virtual agent.e.g.,
changing its size or pose. In addition, our approach could be applied
in many applications and scenarios (e.g., a library, a meeting room),
as Figure 11 shows.
Limitations. Due to the performance limitation of the Mask R-
CNN approach, we can only detect a limited number of objects (15
categories of key objects in our work). We believe that better detec-
tion performance will help to improve the semantics understanding
and realism of virtual agent positioning, especially if more datasets
for object detection become available. In addition, we ran the op-
timization process on a PC rather than on the Hololens due to the
limited computing power of the Hololens. With further advancement
in the computing capabilities of mixed reality devices, we may be
able to run our whole approach on a mixed reality device efficiently.
Future Work. In our work, we fixed the height of the virtual
agent at 30cm or 175cm, which varies according to the height of
the surrounding objects. We consider to add the factor of size of
the virtual agent into cost function which is more convenient to
interact with people of different heights. Besides, the existing 3D
object detection methods are not efficient enough, and the detection
accuracy is significantly lower than that of 2D methods. If better
3D object detection methods are proposed in the future, we will
consider to use them to enhance the overall process.
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