Functional Workspace Optimization via Learning Personal
Preferences from Virtual Experiences
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Fig. 1: Our approach learns the personal preferences of using a functional workspace by analyzing a user performing given tasks
via VR devices (left), e.g., making a salad in the kitchen. The learned preferences are applied to optimizing the workspace, which
results in an updated layout that fits the user’s preferences better (right).

Abstract—The functionality of a workspace is one of the most important considerations in both virtual world design and interior design.
To offer appropriate functionality to the user, designers usually take some general rules into account, e.g., general workflow and
average stature of users, which are summarized from the population statistics. Yet, such general rules cannot reflect the personal
preferences of a single individual, which vary from person to person. In this paper, we intend to optimize a functional workspace
according to the personal preferences of the specific individual who will use it. We come up with an approach to learn the individual’'s
personal preferences from his activities while using a virtual version of the workspace via virtual reality devices. Then, we construct
a cost function, which incorporates personal preferences, spatial constraints, pose assessments, and visual field. At last, the cost
function is optimized to achieve an optimal layout. To evaluate the approach, we experimented with different settings. The results of the

user study show that the workspaces updated in this way better fit the users.

Index Terms—Affordance, Human-centered Design, Virtual Environments, Workspace Design, Remodeling.

1 INTRODUCTION

Scene design is in high demand in the virtual world and in real life. As
a unique kind of scene, a workspace has many factors to be considered
during the design process, including those related to functionality and
ergonomics. In designing a convenient and comfortable workspace
to work in, some rules derived from population statistics, are usually
incorporated by designers. However, some personal preferences are
difficult to satisfy, e.g., different work-flows from different users, dif-
ferent body proportions, or the preferences of placing objects. For
example, one person might want to place a tea table on the left side
of a sofa in a living room instead of on the right side. Although both
arrangements of the tea table (on the right or the left) are reasonable,
people’s experiences in these two scenarios are different. Some may
feel that the placement is convenient, but others do not. This is due to
the diversity of personal preferences.
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To exploit a user’s preferences and design a workspace to serve a user
well, designers usually observe or communicate with the user about
his daily activities. Experienced designers can summarize the user’s
preferences from his daily activities and make use of this information
to adjust and adapt the design to the specific user. The processes
of observing and communicating are usually time-consuming. The
effectiveness of the process also depends greatly on the experience of
the designer.

Most recently, some automatic scene synthesis approaches [12,17,41,
52] have been proposed to generate reasonable scenes, which consider
aesthetics, functionality, and general human activities. We attempt
to address the problem of remodeling the design of a workspace in
a different way, by adapting it to an individual user, incorporating
the users preferences in using the workspace. We design a pipeline
to learn the user’s personal preferences. When a designer completes
the design of a workspace for a user, it is convenient to generate a
corresponding virtual scene to animate the design by some automatic
approaches [32,49]. Then the user can try out the design in a virtual
scene via VR devices. During the trial, our approach captures the
activities of the user and models his personal preferences, which are
later used to optimize the initial design later.

To learn the personal preferences, we design some tasks that are
typical for the desired workspace, e.g., making a salad, frying steak,
or making soup in a kitchen. The user wears the VR devices (HTC
VIVE and VIVE trackers) and enters an initial virtual workspace, in
which the user performs the tasks. We capture the user’s activities
through VR devices. Then, a cost function, which incorporates personal
preferences, spatial constrains, pose assessments, and visual field, is
formulated to measure how good a layout configuration is for the user.



An optimization algorithm is applied to search for the optimal solution,
resulting in the desired layout.

The main point of our work is to capture human activities and learn
personal preferences using consumer-grade VR devices. By applying
our approach, an interior design may be improved by adapting it to an
individual user according to the learned preferences. Furthermore, our
approach may also help some virtual world games, e.g., Job Simula-
tor [24], whose gameplay takes place in indoor scenes, by providing
customized scene layouts for each gamer.

In this paper, we take a kitchen as an example workspace to demon-
strate our approach because of the diverse functions it serves in dif-
ferent regions. Moreover, we also demonstrate our approach to other
workspace scenes in the experiment.

The main contributions of this paper are as follows:

* Propose a pipeline to remodel a workspace by learning the personal
preferences from human activities through VR devices.

* Define a cost function to model the personal preferences, spatial
constraints, pose assessments, and visual field. The cost function is
optimized to develop the remodeled workspace.

* Conduct experiments and perceptual studies on different settings to
validate the effectiveness of the approach.

2 RELATED WORK

In this section, we review the previous research in the areas of tradi-
tional interior design, automatic layout synthesis, and posture assess-
ment, which are highly related to our problem.

2.1 Traditional Interior Design

In the field of traditional interior design and decoration, there are some
basic rules, design standards, and design rationale followed by design-
ers, such as work triangles [18] and relationships between the user and
the internal space [19]. Despite the common design criteria, some de-
sign approaches tend to explore the characteristics of the individual user,
such as user-centered design [23], using questionnaires, face-to-face
interviews, and focus groups [1], and so on. Generally, these methods
are time-consuming in practice, and the designer’s work schedule may
be too overloaded.

Nowadays, some commercial software has been developed to help
professional designers or general users to design and visualize a design
scheme, thus improving the user experience and speeding up the design
process. Floorplans [46] is a building floor drawing software. Using
this tool, the user can calculate the size of a house accurately in a few
seconds. An accurate size calculation for a house helps the user to
estimate whether a furniture is suitable for a room before buying it.
Sweet Home 3D [13] is an interior design software that helps the user
to design and decorate furnitures using a two-dimensional home plane.
The user can also preview the entire layout from a 3D perspective.
Some software, e.g., Planner 5D [26], can be used to design rooms
down to the smallest architectural details, including windows, stairs,
and partitions. The software is mainly used to visualize and design the
space more realistically and has convenient interfaces that enable users
to interact naturally with the designed scenes.

Compared with the traditional interior design approaches, our ap-
proach mainly explores the automatic generation of a scene, considering
personal preferences.

2.2 Automatic Layout Synthesis

Synthesizing indoor scenes to generate a reasonable layout has practical
applications. Some works applied object-related constrains to suggest
the arrangements of the given furniture [2,9,17,44,50]. Kjlaas et
al. [22] proposed to automate the process of generating large furnished
models of building interiors. The approach selected a template and
adapted it to a given room, recursively resolving spatial conflicts in
the room template subspaces until a valid furniture configuration was
obtained. Genetic algorithms are also used to solve constrained object
layout problems [42,51]. Yu et al. [52] employed the relations learned
from 3D scene datasets to optimize the layout of a room through an

MCMC optimizer. Merrell et al. [35] established layout based on the
predefined guidelines from the actual experience of interior designers.
The scene understanding techniques [29, 30] can help to provide the
priorities for the scene and improve the synthesized results.

Considering human factors for scene synthesis has become increas-
ingly popular since the purpose of the synthesized scenes is to support
human activities. Fisher et al. [10] synthesized 3D scenes that allow
the same activities as real environments represented as noisy and in-
complete 3D scans. Qi et al. [41] learned the layout distributions from
an indoor scene dataset and sampled it to generate new layouts us-
ing Monte Carlo Markov Chain. Human contexts were encoded as
contextual relations.

Different from the previous works, which employed predefined rules
or learned rules from general human activities, we focus on learning
and applying an individual user’s preferences to improving an initial
layout. The VR devices enable our approach to capture the user’s
activities and learn their personal preferences [3,8,43]. Driven by the
personal preferences, the optimizer searches for an updated layout to
fit the individual user better.

2.3 Posture Assessment

When a user works in a workspace, the postures he assumes while
working will influence the amount of fatigue experienced. Some pos-
tures are determined by the workspace. For example, when a user sits
on a chair and writes, his posture depends greatly on the height of the
table and the chair. Studying the postures used in a workspace may
help to design a reasonable workspace [7].

Many studies have been conducted to model the relation between
the comfort of a user and his postures. Some postural analysis tech-
niques have two, usually contradictory, qualities of generality and
sensitivity [11]. In a postural analysis study high generality may be
compensated for with low sensitivity. The Ovako Working Posture
Analysis System [20] had a wide range of use but the results can lack
detail. In contrast, NIOSH [45] required detailed information about
specific parameters of the postures to achieve a high sensitivity with
respect to the defined indices. Priel et al. [40] proposed “Posturegram”
to evaluate postures using score cards. It took a few minutes to record
and score one gesture. Thus it cannot be applied to the dynamic ac-
tivities. The increasingly widespread use of VR devices enables a
system to conveniently capture dynamic motion. Compared to the
traditional motion capture systems [31,38,48], VR devices have the
advantage of rapid and accurate data capturing and are also more fun
to use. [25,27,36]. We apply the latest VIVE tracker and the Inverse
Kinematics algorithm [5] to estimate human postures, based on the
features of high precision and low system latency [39].

Some posture assessment methods are proposed in the field of er-
gonomics. Kemmlert et al. [21] proposed PLIBEL to determine and
to identify musculoskeletal tension factors, which were judged by
the related user self-evaluation of related questions. The QEC [28]
used a combination of observer observation and self-assessment by
the observer without considering the lower posture when the observer
observed it. RULA [34] was an operation-related upper limb posture
assessment method based on an evaluation form that also did not take
the lower posture into consideration either. In our approach, we used
the REBA [14] to evaluate posture. This is a rapid assessment method
for whole body posture that has a combination of upper limb, lower
limb, and whole body posture assessment tables to evaluate posture.

3 OVERVIEW

We represent a workspace as a layout configuration of it, which is
denoted as L. Assume that the workspace consists of N components.
For the ith component, we consider two attributes: position (x;,y;,z;)
and orientation o;. To simplify the problem, when the component is
located on the floor, e.g., a base cabinet, the position represents the
center of the top surface. When the component is hung on a wall,
e.g., a shelf, the position represents the center of the bottom surface.
The rotation on the floor plane is represented by o;. Accordingly,
L= {li|l; = (xi,yi,zi,0i)}, where i € {1,2,--- |N}.
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Fig. 2: Overview. Given an initial workspace (a), a user interacts in it and performs some tasks through the HTC VIVE devices, e.g., cooking (b).
Through the floor plane optimization and the wall plane optimization (c), we obtain an updated workspace (d).

Given an initial workspace, our approach aims to find an optimal
configuration L* based on the learned personal preferences. The per-
sonal preferences refer to how a user uses the workspace, including
the preferences on workflow and object storage as well as the user’s
attributes (i.e., stature and body proportions). It is worth noting that the
initial workspace can be configured by referring to the similar scenes in
the IKEA Kitchen and can also be initialized by some automatic scene
synthesis approaches e.g., [12,52].

The framework is shown in Fig. 2. Our approach includes two stages:
personal preferences learning and workspace optimization.

Personal preferences learning. A user enters the initial virtual
workspace via the HTC VIVE apparatus. He is given some tasks
to perform in the virtual world. To accomplish the tasks, the user nav-
igates in and interacts with the virtual workspace. His activities are
captured, based on which the personal preferences are learned. The
personal preferences are then used to optimize the initial workspace.
We will discuss the details in Sec. 4.

Workspace optimization. Considering the independence between the
floor plane and the wall plane, we decompose the optimization into
two parts: floor plane optimization and wall plane optimization. The
floor plane optimization focuses on optimizing the location of each
component along the floor plane, i.e., (x;,y;,0;), which is discussed
in Sec. 5. The wall plane optimization focuses on the height of each
component, i.e.,z;, which is discussed in Sec. 6.

4 LEARNING PERSONAL PREFERENCES

The level of functionality of a workspace usually depends on a users
personal preferences of using it. The preferences can be reflected by
the user’s activities. In this section, we discuss how to learn such
personal preferences for an individual user through the observation of
his activities.

Our approach defines a set of tasks in the virtual workspace that are
typical for the kind of workspace. A user enters the initialized virtual
workspace by wearing the HTC VIVE and HTC trackers. He is given
the task instructions and is required to perform the tasks one at a time.
During this process, all parameters from the HTC VIVE trackers are
captured and are used to model the personal preferences of the user.

We take the kitchen as an example workspace to demonstrate our
approach. More results of other workspaces are shown in Sec. 7.4.

4.1 Task

In the kitchen scenario, we define three tasks: make a salad, fry a steak,
and make soup. For the user, there are three steps to accomplish each
task:

(1) Receiving instructions. The user will see an information board in
front of him. On the board, the goal of the task and the overall action
steps are shown. More detailed information will be given step by step
during the user’s interaction.

(2) Setting up. In this step, the user is required to place all objects
that will be used in the task somewhere in the workspace that he likes.
The objects are shown by a menu. The user can use a controller to
select and place the objects. We do not set any constraint in this step
since we also want to learn the storage preferences of the user. Later,
the user may retrieve the stored objects through the menu.

(3) Acting. The user executes the task instructions step by step.
It is worth noting that the steps given to the user are abstract and

without many details. For example, when the task is frying steak, the
instructions are: take out the steak, soak with soy sauce, add pepper
and olive oil, and so on. The instructions will not tell the user to take
out a bowl, put the bowl on the table, and then go to get the steak out.
The reason is that our approach tends to give more flexibility to the user
in order to discover his preferences.

After accomplishing one task, the workspace will be cleaned up and
reset automatically. The user then turns to the next task and repeats the
above three steps, until all tasks are accomplished.

4.2 Human Activity Capture

During the virtual experiences, we want to know the activities of the
user at each frame, i.e., location, pose, and which component the user
is interacting with.

We provide an HTC VIVE headset, two controllers, and three track-
ers to the user to navigate and accomplish tasks within the virtual
environment. Considering that carrying extra sensors will influence
the user’s experience, we only only use three extra trackers as sug-
gested [16]. With these devices, the user can control his viewpoint and
interact with virtual objects. The headset is worn on the head. The two
controllers are held in the hands. The three trackers are attached on the
waist and the feet.

Each sensor provides six parameters of itself (three for translation
and three for orientation). Using these parameters, we apply the Inverse
Kinematics algorithm, which infers the positions of the other joints of
the user by the Jacobian inverse technique in real time [5], to obtain the
whole pose. A pose includes 16 points, and each point has six degrees
of freedom.

Location. The location of the user is regarded as equivalent to the
location of the waist. Therefore, we take the coordinate of the waist as
the location of the user. During all tasks, the location sequence of the
user is written as H = {hy,hy, - }, where A is the set of 3D coordinate
of the waist at time 7.

Interaction. During all tasks, we record the index of the component
that the user interacts with at each time. The index sequence is written
as I = {iy,ip, -}, where i, is the index of the component.

Load. We keep a sequence of object mass changes to record when the
user transfers objects from one component to another. The sequence
is written as M = {my,my,---}. We define the mass of each object
according to its weight in real life.

Pose. To analyze the user’s poses, we record the translation and the
orientation for the 16 points.

It is worth noting that we do not use a camera, e.g., Kinect to capture
the human activities. The reason is that the accuracy of the camera
capturing depends greatly on the viewpoint. When the user has their
back or side to the camera, the pose cannot be captured correctly due
occlusion, which often happens when navigating in virtual scenes.

4.3 Personal Preferences

We model the personal preferences that influence a user’s experience
in a workspace. According to such a model, our approach optimizes
an initial scene to fit a specific person better. We consider three types
of personal preferences, including the preferences on the workflow,
on the object storage and the user’s attributes (i.e., stature and body
proportions).



Fig. 3: An example of personal preferences. Each colored bar depicts
the user interacting with the component with the same color in the
scene. The ordered sequence of the components represents the personal
preferences for the workflow.

Preferences on workflow. The preferences on the workflow are
reflected by the captured activities even though the activities are noisy
and redundant. For example, when the user manipulates one component,
his location varies around this component.

A concise summary is that we cluster the user’s activities along
the time axis according to what component the user interacts with.
Once the interaction subject is changed, the activity category changes
accordingly. As shown in Fig. 3, each bar with different colors depicts
the component with which the user interacts over time. We use the
index of the indicated component to represent the clustered category.

After clustering, the location sequence of the user H is represented
by an ordered index sequence of the components that the user visits
chronologically P = {py,p2,---,po}, Q is the last cluster of p, and
pr €{1,2,---,N} is the index of the component in the virtual scene. It
reflects the user’s preferences of using each component.

Preferences on objects storage. The user preferences on the object
storage are captured in the setting up process, described in Sec. 4.1.
After the setting up, when the user retrieves the corresponding objects
to achieve the task, the preferences are reflected in the workflow. For
example, in Fig. 3, if the user chose to place the plates into the orange
cabinet, he may frequently transfer between that cabinet and the sink.
During the optimization, the optimizer will tend to place the shelf and
the sink as close together as possible. The shorter distance save the
user energy when transferring between them.

User’s attributes. To capture the user’s attributes, when a user enters
the virtual workspace, there is an initialization process. The user is
required to stand with a natural posture. Then, we recorded all the
parameters of the sensors. Using these parameters, we apply the IK
algorithm to infer the other parameters. The natural pose is denoted
as Oy and will be used as one of the user’s attributes to optimize the
workspace.

5 FLOOR PLANE OPTIMIZATION

In this section, we discuss the floor plane optimization, i.e. optimizing
the location of each component along the floor plane (x;,y;) and the
orientation (0;).

Each component in a workspace plays a role in affording function-
ality. Different users may expend their efforts differently in the same
scene because of their different personal preferences of using the func-
tional component. For example, when accomplishing the task of frying
steak, a user is given the instructions as getting out a steak from the
refrigerator, soaking it, frying and so on. Different users may have
different workflows in detail. When accomplishing the first instruction,
one user may follow the order of taking out a plate, putting it on the
countertop, getting the steak, cleaning it, and putting the steak on the
plate. Another user may follow a different order such as getting the
steak, cleaning it, taking out the plate, and putting the steak on the
plate. In addition, a person may move among the components, such as
the refrigerator, countertop, and oven while carrying different virtual

Fig. 4: The position distribution when the user interacts with the corre-
sponding component. We use a heatmap to visualize the visited times at
each point when the user interacts with the corresponding component.
The redder the color is, the more times the user visited that point.

objects, e.g., pan, knife, steak and so on.

We attempt to optimize the layout by analyzing these transitions so
that the user expends the least effort to achieve the tasks in the updated
layout. We define a cost function to consider the personal preferences
and spatial constraints as follows:

Cﬂoor(RL) = (1 7)LS)CP(P5L) +A‘SCS(L)' (L

Cp(P,L) is the personal preference cost to penalize those solutions
in which the user will expend more energy to complete the given tasks
according to his personal preferences. Cs(L) is the spatial cost which
constrains the workspace from the perspective of the rationality of the
layout, including the accessibility of each component and the free space
of the scene. The weight A is set as 0.5 experimentally.

5.1 Personal Preference Cost

We consider the travelled distance and the loads carried by the user
when he moves around to define a weighted distance as the preference
cost:

I « D(pr,prs1) mi
Go(PL) = . Y, Paliel) e 2
p( ’ ) K k Dmax Mmax’ ( )

where D(py, pry1) is the distance between two adjacent visited compo-
nents along the time axis, whose indexes are py and py, respectively.
The adjacent relation is defined by the preferences on the workflow,
learned form the user activities. my, is the mass of the object the user car-
ries from py to py1, which is captured during the personal preferences
learning process. Dmax is the max distance between two components in
the scene. Mpax is the max mass of all given objects. K is the number
of the elements in preferences on the workflow, i.e., P.

Although the user’s locations in the initial workspace are obtained,
we cannot use the original locations to calculate the cost D( - ) for a new
scene (i.e., L) directly. The reason is that the distance will change with
the layout L changing. Therefore, we simulate a new user’s location
sequence H' by imagining how the user will work in the updated scene
with the layout L.

Given the learned personal preferences P, we generate a location
sequence with K points H' = {h},h},---}. hj represents a possible
location where the user interacts with the k-th component. From the
user’s original locations H, we estimate a distribution of the frequency
of the visited times at each point when the user interacts with the py-th
component. Fig. 4 shows an example. The redder region represents
that the points are visited more frequently. In the implementation, we
take out the k-th and k 4 1-th element in P. p; and py | are the index
of the components. Then we sample from the distribution to generate
the simulated &) and % . D(py, py+1) is calculated as the Euclidean

distance of the two locations j, and h;, Y



Fig. 5: Free space cost. The red region is unreachable. The blue region
is the extended area around a component to ensure a person can walk
through. The yellow region is the free space and is used to calculate
the free space cost by counting grids.

5.2 Spatial Cost
We define the spatial cost as follows:

G(L) = (1= 2p)Ca(L) + 4G (L), ©)

where Cy(L) is the accessibility cost and C¢(L) is the free space cost.
At is the weight, and set as 0.4 experimentally.

Accessibility. In a workspace, each functional component should be
accessible to maintain its functionality [4,37]. We define a collision
area in front of each component. To favor the accessibility, the cost
increases when a component moves into the accessible space of any
other one. Thus, the cost penalty will ensure that there is enough space
for a person to interact with the functional component, e.g., opening a
cupboard door. The cost is defined as:

1 2e;
Cu(L) = o Z;max(o, 1— ) ;Zm ), (4)

1

where d; and d,, are the diagonal length of the component i and m
respectively. e; ,, represents the distance between the center of the com-
ponent i and m, calculated by using (x;,y;,z;) and (Xm,Ym,2m)- In the
implementation, we set a collision detection area for each component.
If one component enters another component’s collision area, the cost
function is activated.

Free space. Another aspect that is considered in workspace design is
the size of the free space. Except for those spaces that are occupied
by functional components and the necessary spaces to access each
component, a person usually prefers to have more free space. That
will make a place look like more spacious. Therefore, we also use free
space where a human can reach to increase the accessibility of a scene
and calculate it from an overhead view.

We illustrate the calculation process in Fig. 5. Technically, we first
detect regions in the scene which are unreachable. Starting from the
door, our approach detects the connected region. The connected region
is a path with a certain width (50cm in our experiments) which allows
a person to walk through. Those unreachable regions are marked in red.
Second, we extend the area around each component to ensure that a
person can walk through. These regions are labeled as blue. Finally,
we put a grid on the remaining regions, (the yellow regions) which are
available, and count the number of grids. The cost is formulated as:

1
Cf(L) =1- 5 Zlgrida (5)

where 1,4 is an indicator function, representing the available grids.
G is the normalization parameter, which is the number of all grids,
regardless of whether it is free space or not. It is worth noting that we
also consider the wall components. The region which is covered by
the projection of a wall component on the ground is also regarded as
occupied. This setting will make the optimizer prefer to choose those
configurations, in which the floor components have more overlaps with
the projects of the components on the wall. That will make more free
space available.
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Fig. 6: An example of the optimization. The curve represents the cost
change during the optimization. We also visualize three intermediate
configurations on the bottom.
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5.3 Optimization

To search for a good layout configuration efficiently, our approach
applies a simulated annealing algorithm. Given an initial configuration
of a workspace L, our approach follows two steps iteratively to explore
the solution space:

(1) Propose a move L! — L*.

(2) Accept or reject the proposed move based on Metropolis-
Hastings acceptance rule:

. L*)
AL, L :min{LP( . } 6)
() p(L)
p(+) is computed using by the defined cost:
1 —C, .
p() = Zoxp—rtd, ™

where Cyoor(-) is defined in Sections 5.1 and 5.2. T is the temperature
of the annealing process. At the beginning of optimization, T is set to a
large value, which allows the sampler to more aggressively explore the
solution space. Then, T gradually decreases throughout the optimiza-
tion. Near the end, 7 attains a small value near zero, thereby allowing
the sampler to refine the solution. Z is a constant for normalization. By
default, we empirically set T to 1.0 and decrease it by 0.05 every 10
iterations until it reaches zero. We terminate the optimization if the
absolute change in the total cost value is less than 5% over the past 20
iterations. In our experiments, a full optimization takes approximately
100 ~ 150 iterations.

We use three strategies probabilistically to introduce solution

changes during the optimization:
Translation. Translation is the basic operation of the optimization that
modifies the position of components in a workspace. A component i
is selected and its location is updated by a move. Mathematically, we
define a linear operation to accomplish the translation move denoted as
(% + Ax,y; + Ay). We sample the variation (Ax,Ay) using a Gaussian
distribution.

In practice, we handle translations differently depending on whether
the component is on the ground or attached on the wall. For the floor
components, we only modify (x;,y;). For the wall components, we
modify (y;,z;) or (x;,z;) according to which wall it is attached to.
Rotation. Rotation works on the orientation of a component. A compo-
nent i is selected, and its orientation is updated with a rotation change
(0; 4+ Ao). The rotation change Ao is generated randomly from a uni-
form distribution of {0°,90°,180°,270°}. To ensure a more stable
optimization, we alternately modify rotation and translation alternately.
Swapping. To enable more rapid exploration of the arrangement space
and avoid becoming stuck in local minima, swapping components
spatially in the workspace is proposed. Two components i and j are
randomly selected, and their positions are swapped. The swapping



operation accelerates the exploration of the solution space. It is worth
noting that we ensure some components are grouped together, e.g., the
range hood and the cooktop. When selected to be translated or swapped,
the grouped components move together.

6 WALL PLANE OPTIMIZATION

In this section, we optimize the height z; of the component. We consider
two factors: (1) pose assessment, which measures how comfortable the
user feels when he works with the component, given its height; and (2)
visual field, which measures how much of a component the user can
see, given the components height. The cost function is defined as:

Cyanl(L,0) = (1 = 4G (L,B) + A4,Cy (L, O). ()

C;(L,®) is the pose assessment cost. We generate a pose sequence
© = {6),6,,--} by imagining what poses the user will take in the
scene, where 6; is the pose which the user takes when interacting with
the ith component. Then the generated sequence is used to measure the
cost Cr(L,®). We will discuss this further in Sec. 6.1. The weight A,
is set as 0.4.

Cy(L,®) is the visual field cost. It influences the height of the wall
component. This term penalizes those solutions in which the users sight
is occluded. It ensures that the user can comfortably see the workspace
as well as the contents in the wall components. We will discuss this
further in Sec. 6.2.

6.1 Pose Cost

We refer to the REBA score [14] to define the post cost. REBA is a
posture analysis tool, that evaluates each pose by considering the risk
of musculoskeletal injury associated with the posture. The REBA score
is obtained from a lookup table according to the angles of 12 points of
a pose, including that of the neck, trunk, two legs, two upper arms, two
lower arms, two wrists, and two feet. A high score indicates that the
posture is more likely to make the user feel tired and has a higher risk
of causing injury. The cost is written as:

1 R(6;)

G0 = gL ©)

where N is the number of all components. R(6;) is the REBA score of
the user’s pose 6; when using the component i. The highest score in
REBA is 12, which is used to normalize the score of one pose to (0,1).
Since we cannot use the posture captured directly from the sensors, we
generate a pose sequence by assigning some key point positions in the
pose, including the position of the hands, feet, waist, and head.

For the hand positions, we use the position of the ith component
(xi,yi,zi), which is the top surface center of a floor component or the
bottom surface center of a wall component, as the hand locations. It
mimics the normal positions of the user’s hands when working on a
countertop or wall component.

For the feet positions, we assume that the user’s feet are always on
the floor all the time since any posture with the tiptoe will increase the
cost according to the REBA score. According to all positions where
the user stand at when he interacts with ith component, we calculate a
average distance d from this component to the user. Then according
to the orientation of the component, the feet location is assigned as
(xi +d,y;) when o; = 0°,180° or (x;,y; +d) when o; = 90°,270°. z; is
obtained from the two trackers on the feet when the user takes a natural
pose in the initial process. The waist and head position are obtained
with a similar strategy.

By those key points(two hands, two feet, waist, and head), we apply
the Inverse Kinematics algorithm to generate the whole pose 6; for the
component .

6.2 Visual Field Cost

Considering that the user wants to see the work area without occlu-
sion, and he also wants to see most contents in the wall components
comfortably, we define the visual field cost as:

Fig. 7: An example of the visual field cost. The green and orange lines
indicate the range covered by the visual field. The yellow and blue
lines indicate the actual range covered by the current visual field.

1 AS,’ AM,’
LO)=1-—Y(=+—
CL.0) =1- 5y BT+

). (10)
N is the number of components. s; is the length that is covered by
the user’s visual field when the user looks horizontally and there is no
occlusion by other components. To calculate s;, we analyze a standing
pose as in Sec. 6.1. Then we adjust the head angle as horizontal. We
suppose that the valid visual field of a person is 15°. We project a
circular cone on the wall the user is facing and calculate the projected
lines’ lengths along the wall as s;, as shown as a green color line in
Fig. 7. u; is the length which is desired to be covered by the user’s
visual field when the user looks up, as shown with the orange color line
in Fig. 7. We set u; equals to the half height of the wall component
as default. This means that our approach encourages those solutions
in which the user can see more contents in the lower part of the wall
component. The default value can be changed according to the user’s
requirements.

To estimate As; and Au;, we suppose that the valid visual field of
a person is 15°. A similar method as in Sec. 6.1 is used to estimate
the user’s standing pose. As; is the actual length which is covered
by the user’s visual field when he looks horizontally at the current
configuration of (L,®), as shown as a yellow line in Fig. 7. We obtain
As; by projecting a circular cone and calculating the height of the
projected line without occlusions. If the visual field is blocked by
another component, the cost will increase. Au; is the actual length of
the wall component which can be seen by the user. We adjust the head
angle from -20° to 20° by 1° interval and calculate all possible values
of Au;. According to the REBA rule, this is a regular range for the
head motion. During the adjustment, we calculate the visual field with
the current head angle. The blue line in Fig. 7 is one example of Auy;.
Finally, we take the largest value as Au;.

6.3 Optimization

The height of the floor component is set in the range of 65¢m to 115¢m,
and the height of the wall component is set in the range of 140cm to
190cm. To meet the uniformity of the workspace, we use a uniform
height for all the components on the floor and wall. The height range is
further discretized by 0.1cm. Since the solution space is not too large
(5050 = 2500), we use an exhaustive search to determine the optimal
height. In the implementation, we enumerate all possible heights. For
each pair of heights, we calculate the cost by the Eq. 8. Then we take
the solution with the lowest cost as a result.

7 EXPERIMENTS

We implemented our approach using C# and Unity 5.6 and ran the
optimization approach on a PC equipped with 32GB of RAM, a Nvidia
Titan X graphics card with 12GB of memory, and a 2.60GHz Intel
i7- 5820K processor. The participants worked in a 3m x 4m virtual
workspace via the HTC VIVE device (the maximum recommended
room size of the device).

Participants. 34 participants were recruited who were unaware of
the purpose of the user study. The participants included 19 males
and 15 females whose ages ranged from 18 to 50. All the subjects



Scene 2

Scene 1

Fig. 8: Four initial scenes in the user study.

reported normal or corrected-to-normal vision with no color-blindness.
18 subjects reported that they did not have any experience in using
VR devices. 11 subjects reported that they cooked every week, and 12
subjects reported that they cooked every month, the other 11 subjects
cooked seldomly.

Procedure. First, the participant familiarized themselves with the
layout of the initial scene, the tasks, and the operations of the VR
devices which took 5 minutes on average.

Second, the participant entered the virtual workspace and received
the instructions about the task. Each task took approximately 10 min-
utes. When one task was accomplished, the scene was reset automati-
cally. Our approach captured the user’s activities when he achieved the
given tasks. Then, the optimization algorithm was applied to synthesize
an updated layout.

After the optimization, the participant was required to interact in
the optimized scene and other scenes generated by other approaches
that we compared with our approach. Then, we asked the participant
to score all scenes. The score range was from 0 to 10. Considering
that using VR devices for a long time may make the user feel tired, we
carried out the evaluation part in the next day.

We performed the user study on four scenes, shown in Fig. 8, which
were created based on traditional kitchen layouts (L-shaped, U-shaped,
and one-wall-shaped). The numbers of components in each scene were
6, 5,7, and 6, respectively.

7.1 Comparison with other approaches

We compare the evaluation results of our approach with the results of
the other two approaches. The approaches compared consist of the
following:

Our Approach: The workspaces were optimized by our approach
after learning the users’ personal preferences.

Designer Approach: The workspaces were manually created by
a designer who had approximately 3 years experience with interior
design. He communicated with each participant and then modified the
initial layout according to the communication.

User Approach: The workspaces were manually created by the par-
ticipants before they experienced in the virtual scene. The participants
observed the scene on a computer and were allowed to modify the
layout or the component’s height as they liked.

We define three metrics to investigate the comparison: (1) conve-
nience, to evaluate how comfortable the user feels during his transition
among the components; (2) height, to evaluate how comfortable the user
feels about the height of the floor components and the wall components;
and(3) overall, to evaluate the overall feeling about the workspace. The
score range of each metric is from O to 10. We instructed all participants
about the metrics and encouraged them to ask questions. During the
evaluation, the order of the scenes generated by the different approaches
is random. We also recorded the processing time for each approach
during the experiment.

24 participants took part in the comparison experiments. They were
divided into four groups, and each group was randomly assigned to
an initial workspace. Fig. 9 shows the rating results for the three
approaches. The blue, orange and green boxes depict the ratings for our
approach, the Designer approach and the User approach respectively.

In terms of the convenience rating, our approach obtained the highest
score (M = 6.50, SD = 1.47), followed by the approach of Designer
(M =6.29,SD = 1.24) and User (M = 4.79, SD = 1.08). The ratings
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Fig. 9: The box plots of the user rating for the scenes generated by three
approaches. The bottom and top edges of the boxes indicate the 25th
and 75th percentiles, respectively. The horizontal lines indicate the
median rating. The whiskers extend to the most extreme data points.

of our approach and the Designer approaches on convenience are close.
However, the Designer approach rating has less diversity.

In terms of the height rating, our approach (M = 6.29, SD = 1.17)
outperforms the approach of Designer (M = 5.67, SD = 1.21) and the
User approach (M = 4.75, SD = 1.09). We collected the responses
about the height settings from the Designer and the User approaches.
The designer said he adjusted the component height according to the
user’s height. 13 of the participants reported they used similar heights
with their kitchens. 7 of them reported lowering the heights according
to their kitchens. 4 of them reported estimating according to their expe-
riences. We believe that the body proportions captured by the sensors
may help our approach to optimize the heights of the components to fit
the individual user better.

In terms of the overall rating, our approach (M = 7.21, SD = 1.12)
also performs better than the Designer approach (M = 6.58, SD = 1.04)
and User approach (M = 4.63, SD = 1.18). It shows that the learned
personal preferences may help to generate a personalized layout.

We also performed an ANOVA test on the convenience, height and
the overall rating at the o = 0.05 significance level. The results were
statistically significant between the Our approach and the User approach
(convenience: () »3) = 20.15, p <.05), height: (F}; 53 =21.34, p <
.05), overall: (Fjj 31 = 57.94, p < .05)); the Designer approach and
the User approach (convenience: (Fjj 23 = 19.13, p < .05), height:
(F123) =7.27, p < .05), overall: (F}1 »3) = 35.60, p < .05)).

The results did not show any statistical significant between our
approach and the Designer approach (convenience: (Fjj 23 = 0.27,
p = 0.61 > .05), height: (17[1723] = 3.16, p = 0.08 > .05), overall:
(F[1,23) = 3.86, p = 0.06 > .05)). However, if we consider the process-
ing time, we can see the difference. Our approach was accomplished
within an average time of 3.75 minutes (the shortest is approximately
2 minutes, and the longest is approximately 5 minutes), while the
Designer approach spent 38.42 minutes on average (the shortest is ap-
proximately 28 minutes, and the longest is approximately 65 minutes).
The results show that our approach outperforms the User approach
with statistical significance and implements faster than the Designer
approach.



Scene 1 Scene 2

Scene 4

Scene 3

Fig. 10: Two users interact in four scenes. (a) and (c) are the human activities of Userl and User2 captured by the sensors. We use heatmaps to
visualize the weighted frequency visited by the user when he/she uses the workspace to achieve tasks. The value of each point is the summation
of the carried weight by the user. The redder the color is, the higher the value is. (b) and (d) are the visualizations of the optimized results.

7.2 Personal Preferences across Scenes

The core of our approach is to learn the personal preferences of the user
by assuming that the personal preferences will remain across different
scenes. To validate this point, we invited ten participants to experience
all four scenes shown in Fig 8, different from the experiment in Sec. 7.2
in which each participant experienced one workspace. Our approach
generated the optimization results for each of them based on different
scenarios.

In Fig. 10, we show examples of two users (Userl and User2). From
the first to the fourth column are the four scenes (the same as Fig. 8),
respectively. (a) and (c) are activities captured from two users plotted
with a heatmap, where the color of each pixel depicts the weighted
trajectories (the summation of the objects’ mass the user carried at each
point) of the user. (b) and (d) are the optimized results according to
their personal preferences.

It is interesting to see that there are some similarities in one par-
ticipant’s activities in some details across the four scenes in Fig. 10.
For example, User1 preferred to store the food such as vegetables and
fruits in the refrigerator (highlighted by green color). When she took
out food from the refrigerator, she always went to the sink (highlighted
by yellow color) to wash them directly. Based on his preferences of
walking between the refrigerator and the sink frequently, our approach
optimized the position of the refrigerator next to or close to the sink,
User2 transferred between the wall component (highlighted by pur-
ple color) and the sink (highlighted by yellow color) more frequently.
During his experiences, he preferred to put the plates into the shelf.
Additionally, he washed each plate when he was going to use it. This
preference is reflected in (c), where the trajectories between the sink
and the shelf were redder. Thus, compared with the initial scenes, the
sink and the shelf were closer in the optimized results.

The results of the experiment support our hypotheses that the per-
sonal preferences of an individual are constant across scenes. Thus, our
approach can generate new human activities from the learned prefer-

ences to optimize the layout, as discussed in Sec. 5.1. We think that the
setting up process is also helpful. Since the storage positions influence
the human activities, i.e., different storage positions leading to different
human trajectories, our approach requires the user to decide where to
put all objects in the setting up process. Although we do not model the
preferences for storage in our approach explicitly, it is encoded in the
human activities and learned as the preferences later.

7.3 Personal Preferences in Wall Plane

To investigate whether the body proportions influences the optimized
results, we analyze some users’ data whose heights are the same. In
Fig. 11, we show the wall plane optimization of three users, whose
heights are all 165cm. The horizontal and vertical axes represent the
height of the floor component and the wall component, respectively.
Each point’s color depicts how comfortable the user feels about the
height according to the cost definition. The redder the color is, the
smaller is the corresponding cost value is. The white dashed rectangles
in Fig. 11 bounded the suggested height ranges mentioned in [33,47].
From the visualized optimization results, we can see that the optimal
solution intervals all fell into the suggested height range. Since the
optimal height result may not be unique, we use a nearest rounded opti-
mal height as the output. The optimized height of the floor component
Userl is 90cm; the optimized heights of the floor component for both
User2 and User3 is 85¢m. Based on the pose measurement, we find
that the position of the elbow joint of User! is significantly higher than
that of User2 and User3. The difference between User2 and User3 is
mainly reflected in the result of the height of the wall component. The
optimized wall component height for User2 is 150cm; the optimized
wall component height for user3 is 155c¢m. Both User2 and User3 have
a similar body proportion, but User2 stands further from the floor com-
ponent than User3. This preference may lead to a change of view cost
in the wall plane optimization and result in different wall component
height results.
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Fig. 11: Wall plane optimization process for three users with a height
of 165¢cm. We use heatmaps to visualize the wall plane cost. The
horizontal axis represents the height of the floor component; the vertical
axis represents the height of the wall component. The redder the color
is, the more suitable for the user.

7.4 Optimization for Other Workspaces

To examine the generality of our approach, we experiment on two other
workspace scenes: a tailor shop and a garage workbench. We design
different tasks in these two scenes. For the tailor shop, the tasks we
set are drawing, taking out clothes, sewing, and so on. For the garage
workbench, the tasks are changing work clothes, changing a tire for a
bicycle, and so on.

Fig. 12 shows the optimized results. For the tailor shop scene, a user
preferred to put tools into the shelf. When she started the task, she got
the tools from the shelf first and then turned to the desk. Comparing the
initial scene with the optimized scene, we can see that the optimized
scene brought the wall component and the desk closer. In addition,
after sewing the clothes, she usually put them on the dress form. In
the optimized scene, the sewing machine was optimized to the position
adjacent to the dress form. For the garage workbench, the storage
components (the shelf and the high cabinet) were optimized to be apart,
which was more consistent with a user’s habits of operation. More
specifically, he frequently travelled between two shelves and he had
less interaction with the high cabinet. In addition, the sink was used
only once in his experiences; thus it was moved from the middle to the
edge in the updated layout.

The results of the experiment show that our approach can be applied
to more than one workspace category. By setting the proper tasks for
the kind of workspace, our approach can learn the personal prefer-
ences from the user’s operations. Then, our approach can optimize a
more reasonable layout of the scene with more proper heights of the
components.

8 SUMMARY

In this paper, we present an approach for remodeling workspaces based
on the personal preferences. We design a pipeline to learn the personal
preferences from human activities. Based on the learned personal
preferences, two cost functions are defined to evaluate how reasonable
the layout of a scene is (floor plane cost function) and how comfortable
the user may feel about the height of each component (wall plane cost
function). In the floor plane cost function, we consider the personal
preference and spatial information. In the wall plane cost function, we
consider the pose and visual field of the user. The cost functions are
optimized to output an updated workspace, which fits an individual
user better.

A virtual reality approach has great benefits for the design of the
scene. VR devices offer realistic and immersive experiences, which
allows users to experience a designed workspace before actually build-
ing them. Compared with other approaches, our approach can learn
the user’s personal preferences. The learned personal preferences can
help to improve the design and make it more suitable for individuals,
especially when the user’s preference is inconsistent with the statistical
data from crowds.

Limitations. The interactions with the objects in the scene are not
consistent with the real world. For example, when a user places the
objects somewhere in the scene, he needs to select the object from a
menu; point to the position; and press the trigger to release the selected
object. Due to the limitations of the hardware devices, we simplify
parts of the interaction. If VR gloves or other interactive devices can

Tailor shop

~ Garage workbench -

Initial scene

Optimized scene

Fig. 12: The optimized results of a tailor shop and a garage workbench.
The scenes are optimized based on the user’s operational preferences
and work trajectory after the user performs the given tasks.

be used, the user’s experience in the interaction process will be more
realistic.

Different from the real world, our approach does not provide realistic
haptic feedback to the user, which may affect the user’s experience. For
example, in a kitchen setting, cutting is not so realistic without tactile
feedback. When a user carries an object, he does not feel the weight of
the object as in the real world.

Moreover, due to the space constraints of the HTC VIVE device,

it is hard to optimize a scene that exceeds the maximum space size.
Our approach could be applied to a larger scene if devices such as the
Virtuix Omni could be used. In addition, the number, the size, and the
style of the components are immutable during the optimization. This
may reduce the diversity of the optimized design results.
Future Work. One possible extension is to integrate 3D reconstruction
techniques [6, 15] into our approach. With a reconstructed 3D scene or
a scanned 3D scene, we can apply our pipeline to optimize an existing
workspace conveniently. In this way, if a user wants to redesign an
existing workspace, such as a kitchen, our approach can use the current
workspace as the initial scene without extra effort. Of course, we can
also integrate graphics techniques to extend the initialization process.
For example, we can use the works of sketch2scene approach [49] to
generate a 3D scene from a sketch. Moreover, if we can estimate the
users trajectories and actions accurately in the real environment (e.g.,
from a video or surveillance camera) in the future, it may help the
approach further, given the natural interactions and natural activities.
It also allows our approach to integrate with that of a designer. The
designer provides an initial design, then our approach helps to optimize
the initial design in terms of the personal preferences.

Another possible extension is to take into account the structure of
the target scene. For example, the sink should be next to the water
supply, and the gas stove needs to be near the gas pipe. With these
requirements added, the optimized results will be more practical.

Currently, we provide one initial scene for the user to experience.
The tasks are defined based on the characteristics of the workspace and
all users achieve the same tasks in one kind of scene. The settings may
affect the user preferences determined. It will be more targeted if we
provide more initial scenes and define more types of tasks for the user
to choose. In addition to personal preferences, we consider accessibility
and free space constraints for the spatial cost. In the future, we may
explore developing other cost functions for issues such as aesthetics,
symmetry, and illumination.

In our current approach, we only consider the personal preferences of
one person. It would be interesting to extend our approach to multiple
people scenarios, where the preferences from different roles could be
considered. For example, if we want to optimize an office coffee bar,
we need to consider the different preferences from different people.
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